Arachidonic acid mediates non-capacitative calcium entry evoked by CB1-cannabinoid receptor activation in DDT1 MF-2 smooth muscle cells.
نویسندگان
چکیده
Cannabinoid CB1-receptor stimulation in DDT1 MF-2 smooth muscle cells induces a rise in [Ca2+]i, which is dependent on extracellular Ca2+ and modulated by thapsigargin-sensitive stores, suggesting capacitative Ca2+ entry (CCE), and by MAP kinase. Non-capacitative Ca2+ entry (NCCE) stimulated by arachidonic acid (AA) partly mediates histamine H1-receptor-evoked increases in [Ca2+]i in DDT1 MF-2 cells. In the current study, both Ca2+ entry mechanisms and a possible link between MAP kinase activation and increasing [Ca2+]i were investigated. In the whole-cell patch clamp configuration, the CB-receptor agonist CP 55, 940 evoked a transient, Ca2+-dependent K+ current, which was not blocked by the inhibitors of CCE, 2-APB, and SKF 96365. AA, but not its metabolites, evoked a transient outward current and inhibited the response to CP 55,940 in a concentration-dependent manner. CP 55,940 induced a concentration-dependent release of AA, which was inhibited by the CB1 antagonist SR 141716. The non-selective Ca2+ channel blockers La3+ and Gd3+ inhibited the CP 55,940-induced current at concentrations that had no effect on thapsigargin-evoked CCE. La3+ also inhibited the AA-induced current. CP 55,940-induced AA release was abolished by Gd3+ and by phospholipase A2 inhibition using quinacrine; this compound also inhibited the outward current. The CP 55,940-induced AA release was strongly reduced by the MAP kinase inhibitor PD 98059. The data suggest that in DDT1 MF-2 cells, AA is an integral component of the CB1 receptor signaling pathway, upstream of NCCE and, via PLA2, downstream of MAP kinase.
منابع مشابه
Reciprocal regulation of capacitative and non-capacitative Ca2+ entry in A7r5 vascular smooth muscle cells: only the latter operates during receptor activation.
In A7r5 vascular smooth muscle cells, Arg(8)-vasopressin (AVP) stimulates phospholipase C leading to activation of two distinct Ca(2+) entry pathways. The capacitative Ca(2+) entry (CCE) pathway is activated by depletion of Ca(2+) stores, is permeable to Mn(2+), Ba(2+) and Ca(2+), and is selectively blocked by Gd(3+)(1 microM). A7r5 cells also express a non-capacitative Ca(2+) entry (NCCE) path...
متن کاملDifferent phospholipase-C-coupled receptors differentially regulate capacitative and non-capacitative Ca2+ entry in A7r5 cells.
Several receptors, including those for AVP (Arg8-vasopressin) and 5-HT (5-hydroxytryptamine), share an ability to stimulate PLC (phospholipase C) and so production of IP3 (inositol 1,4,5-trisphosphate) and DAG (diacylglycerol) in A7r5 vascular smooth muscle cells. Our previous analysis of the effects of AVP on Ca2+ entry [Moneer, Dyer and Taylor (2003) Biochem. J. 370, 439-448] showed that arac...
متن کاملArachidonic acid is functioning as a second messenger in activating the Ca2+ entry process on H1-histaminoceptor stimulation in DDT1 MF-2 cells.
This study was carried out to identify the cellular component activating the histamine-stimulated Ca2+ entry in vas-deferens-derived DDT1 MF-2 cells. H1-histaminoceptor stimulation resulted in a rise in intracellular Ca2+ concentration, caused by Ca2+ release from inositol phosphate-sensitive Ca2+ stores and Ca2+ entry from the extracellular space, accompanied by a transient Ca(2+)-activated ou...
متن کاملMutual antagonism of calcium entry by capacitative and arachidonic acid-mediated calcium entry pathways.
In nonexcitable cells, the predominant mechanism for regulated entry of Ca(2+) is capacitative calcium entry, whereby depletion of intracellular Ca(2+) stores signals the activation of plasma membrane calcium channels. A number of other regulated Ca(2+) entry pathways occur in specific cell types, however, and it is not know to what degree the different pathways interact when present in the sam...
متن کاملCarboxyamidotriazole-induced inhibition of mitochondrial calcium import blocks capacitative calcium entry and cell proliferation in HEK-293 cells.
Blocking calcium entry may prevent normal and pathological cell proliferation. There is evidence suggesting that molecules such as carboxyamidotriazole, widely used in anti-cancer therapy based on its ability to block calcium entry in nonexcitable cells, also have antiproliferative properties. We found that carboxyamidotriazole and the capacitative calcium entry blocker 2-aminoethoxydiphenyl bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cellular physiology
دوره 205 1 شماره
صفحات -
تاریخ انتشار 2005